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Branched Polymers in a Wedge Geometry 
in Three Dimensions 
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We investigate the statistical and dimensional properties of uniform star 
polymers attached by the branching vertex of degree f i n  a wedge geometry in 
three dimensions and described by the wedge angles 0 and ~b. We show that the 
growth constant is equal to #Jl where/1 is the self-avoiding walk limit. T h e f a n d  
(0, ~b) dependences of the corresponding critical exponent 7/(0, ~) are studied 
using Monte Carlo techniques. In the case f =  1, our results are compared with 
existing predictions obtained from series expansion and renormalization group 
methods. We have also estimated the amplitudes for the mean square radius of 
gyration and the mean square end-to-end branch length. Our results for the 
ratio of the mean square radius of gyration of an f-star to that of a linear 
polymer of the same degree of polymerization attached in a similar wedge, and 
the analogous ratio for the mean square end-to-end branch length, are consis- 
tent with these ratios being lattice-independent quantities. 

KEY WORDS:  Uniform star polymers; three-dimensional wedge geometry; 
growth constant; Monte Carlo; critical exponents. 

1. I N T R O D U C T I O N  

Over the last few years, there has been considerable interest in the excluded- 
volume effect in uniform star-branched polymers. These structures have f 
branches meeting at a common branching point and have the same number 
of monomers in each of their branches. Theoretical work on the statistics 
and dimensions of uniform stars includes a scaling theory, (~'2) a renor- 
malization group (RG) treatment, (3 5) and the use of conformal invariance 
arguments. (6) Numerical results for a lattice version of this model have 
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been obtained by exact enumeration and Monte Carlo methods (7 lO) and 
are in quite good agreement with the theoretical predictions. 

Suppose that the number of uniform stars with n monomers in each of 
the f branches is s , ( f ) .  One expects that asymptotically (n --* oo) 

s , ( f )  ~ n ~:- 12(7)" (1) 

where 2( f )  is the growth constant for f-stars and 7s is the corresponding 
critical exponent. It can be shown (*) that the growth constant, whose exis- 
tence can be proved rigorously, is given by 

2 ( f )  = # f  (2) 

where # is the growth constant for self-avoiding walks (SAWs). In d = 2  
dimensions, the exponent ?r has been calculated exactly using conformal 
invariance arguments. (6) For d = 3 ,  ?r is known by RG methods (3 5) 
through O(e), and has been estimated numerically for small f using exact 
enumeration and Monte Carlo data. ca) 

Recently, attention has turned to uniform stars in confined geometries. 
For example, the growth constants 2(f, L) = [#(f, L)]  y have been studied 
in parallel-sided slabs and slits of width L. For d~> 3, #(f, L) is independent 
of f and equal to #(L), the growth constant of a SAW with the same 
geometrical constraint. (11) When d = 2 ,  however, the situation is quite 
different. It appears then that #(f, L) depends on f and is strictly less than 
#(L). (11,12) 

In earlier work, (13) we have examined the behavior off-stars  when 
confined in a wedge geometry in two dimensions. Let the number of 
uniform f-stars having n bonds in each of the f branches and attached by 
a vertex of degree a = 1 or f a t  the apex of a wedge of angle c~ be sn(e; f,  a). 
One expects in analogy with (1) that 

sn(~; f,  a) ~ n '~"(~) -1 [2(~; f,  a)] '~ (3) 

It is easy to prove, using the methods of Hammersley and Whittington (14) 
and Chee and Whittington, ~11) that 

2(c~; f a) = p /  (4) 

where/~ is the growth constant for SAWs on the parent lattice. Duplantier 
and Saleur (15) have made use of conformal invariance arguments to 
calculate values of 7~a(c~) in two dimensions and our numerical results (13) 
are in good agreement with these predictions. This provides some support 
for the conformal invariance assumptions for these systems. 
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We have also investigated (J3) the mean square end-to-end lengths of 
the branches and the mean square radius of gyration of stars in a two- 
dimensional wedge geometry and discussed their sensitivity to the geometry 
and mode of attachment. In all cases, we found that the corresponding 
critical exponent v is equal to the bulk SAW value. 

In the present paper, we extend the work of Colby eta/. (~3) to uniform 
f-stars in three-dimensional wedges. These are defined by three intersecting 
planes all passing through the origin. Plane I is the (x, y) plane. Plane II is 
a plane containing the x axis with an angle 0 between normals to planes I 
and II. Plane III is a plane containing the y axis with an angle ~b between 
normals to planes I and III. A wedge defined in this way will be referred 
to as (0, ~b)-wedge. For  example, a (~/2, ~/2)-wedge corresponds to an 
octant (or cube corner), while an alternative realization of a 1/8-space is 
a (~/4, ~)-wedge. More generally, a (0, ~)-wedge generates a 0/2~-space 
which is described most simply in cylindrical polar coordinates. Clearly, 
then, a 1/2-space corresponds to a (~, 7~)-wedge. 

We have used an inversely restricted Monte Carlo approach (16) to 
generate data on the simple cubic (SC) and diamond (D) lattices. The 
success rate for Monte Carlo growth in three dimensions is much higher 
than in two dimentions, e.g., about 95 % for an n -- 50 SAW in a half-space 
on the simple cubic lattice, as compared with 50% on the square lattice. 
Consequently, we have been able to use a much smaller number of trials 
than was possible in two dimensions to generate a sample of similar size. 
Thus, for each kind of wedge, we have made 250,000 trials for SAWs and 
between 750,000 and 3.15 x 106 trials for various types off-s tar  ( f >  1). 

For  all f ,  the number of stars attached at the apex of the wedge (i.e., 
the origin) is expected to have the asymptotic behavior 

s,,(o, ~;.f)~n ~(~ ~r,~(o, 6;f)]" (5) 

In this equation, which is analogous to (3), we have suppressed the 
parameter a, since, in all cases, we have only considered stars attached by 
the vertex of degree f This allows 
of collecting data, namely grow 
quantities, and then grow a set of 
the ends of the stars we already 
growth constant 2(0, ~b; f )  is given 

us to use a more time efficient method 
a set of stars, calculate the required 
larger stars by simply adding bonds to 
had. We first sketch a proof that the 
by the analogue of (4), namely 

2(0, ~b;f) = #J  (6) 

where again # is the growth constant for SAWs on the parent lattice. 
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2. G R O W T H  C O N S T A N T  OF U N I F O R M  STARS IN A 
(0, 4 )  WEDGE 

Let the number of f-stars in a diverging wedge f2 be denoted by 
s ,(f2;f) .  Such a star can be constructed by attaching k stars k stars of 
degrees f l ,  f2,..., fk in disjoint diverging wedges (21, s"22 ..... Ok, subject to 
the constraints 

k k 

f i = f ,  U f 2 , = n  (7) 
i = l  i = 1  

This construction will generate all of the f-stars with sets of branches 
confined to the disjoint wedges. Hence, we obtain the lower bound 

k 

s,(n;f)> 1-[ s.(n,;L) (8) 
i = 1  

To derive an upper bound, we concatenate k' stars of degrees 
f'~, f~  ..... f2  in the wedge f2. This construction generates all f-stars with 
mutually-avoiding branches, as well as some others with intersecting 
branches. Hence, 

k '  k '  

s,(f~;f)~< 1-I s.((2;fl),  ~ f ' i=f  (9) 
i = 1  i = l  

If we choose k = k' = f and f~ = f~ = 1 for all i, then we may rewrite the 
bounds in terms of the number c, of SAWs in various wedges, i.e., 

f f 

H c.(s V[ c.(g2) (lO) 
i = i  i = 1  

However, we know from the work of Hammersley and Whittington (14) that 
the growth constant of a SAW in any wedge of the type used here is the 
same as that of a SAW on the parent lattice. This observation, together 
with (10), establishes that 

lira n 11ogs,,(Q;f)=flog# (11) 
n ~ o o  

Hence, the growth constant is given by (6). Our Monte Carlo data are in 
complete agreement with this result. 

We note that the rigorous bounds (8) and (9) imply the following 
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inequalities between the corresponding critical exponents (assuming that 
they exist): 

k' k 

,/f;(f2) + k - k ~- ?/.(n) + k - 1/> ~ 7~((2,1 (12) 
i = 1  i = 1  

subject to the constraints in (7) and (9). Discussion of these inequalities is 
deferred until Section 4. 

3. M O N T E  C A R L O  C A L C U L A T I O N S  FOR S A W s  

We begin by considering the particular case f =  1, corresponding to 
SAWs, since this is the only case where we can make contact with earlier 
work. Data have been obtained for six different types of wedge, including 
(0, ~t)-wedges with 0 = ~z/4, ~/2, ~ (i.e., the half-plane) and 3~/2, as well as 
(~z/2, ~/2)- and (3~/2, 3~/2)-wedges, i.e., "internal" and "external" cube 
corners, respectively. If sn(O, ~b; 1) behaves as in (5) and (6), we note that 
a plot of In[s,,(& ~b; l)//,"]/ln n against 1/ln n will approach [71(0, ~b)- 1] 
linearly as n -+ oo. Typical plots are shown in Fig. 1 and our best estimates 
are summarized in Table I. 

O00FI 1 i I r-I l F I -~1  I T 1  I 1 r I ~ 

--4 O0 + , 
\ 

C ~ \  +- 

- 500 ~%+q~  

t +  

- 6 O0 + 

--700 ~ . L ~ I  l 1 L _ I  I _ I _ L _ I  �9 ~ t _ J = l ~ _ . J . _ l ~ _ _ l ~  
G.O0 0 10 020 0.30 0 l.O 0 50 

l / I n  ( n f )  

Fig.  1. M o n t e  Carlo estimates o f  7.r(~, ~ ) -  1 for the diamond (x) and simple cubic ( + )  

lattices. The  largest error bars are about  equal  to the size of  the symbols .  
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Many workers have estimated the exponent ))l(TZ, 7I") for a half-space. 
Series estimates include 0.708 +0.008, (~7) 0.700+_0.005, (is) 0.70-}-0.02, (19) 
0.71 _+0.02, (2~ and 0.676_+0.009. (21) In addition, there is a Monte Carlo 
estimate of 0.69 +_ 0.01 (22) and an O(e2)-expansion estimate of 0.695. (23) Our 
Monte Carlo result (0.703 + 0.005) is consistent with all previous estimates 
except the series estimate of Guttmann and Torrie, (2~) where the uncertain- 
ties just fail to overlap. We note that all the estimates of 71(rc, z) satisfy the 
exact inequality (17) 

710z, ~) ~< (7 + 1)/2 

where 7 = 1.1615 _+ 0.0020 is the corresponding critical exponent for SAWs 
in the bulk. (24) 

In a (0, rc)-wedge, Cardy (2s) has calculated first order g-expansions for 
the N-vector model from which one can derive (21) 

7 1 ( O ' r c ) = l - 2 - \ N + 8 ] \  242 g (13) 

where 2 = ~/0. Our case corresponds to setting N =  0 and g = 1. Guttmann 
and Torrie (21) have tested Cardy's result by using series analysis techniques 
on exact enumeration data. They find 

71(0, re) = v(yo + Y2 + 2 -- d) (14) 

where, on the basis of RG estimates, the bulk scaling index is 

Yo = 2.488 +_ 0.004 (15) 

and, on the basis of series estimates, they conjecture for the edge scaling 
index 

1 (0.847 + O.O17)(rc/O) Y2----i-- (16) 

In Table I, our Monte Carlo estimates for ~1 in (0, ~r)-wedges are compared 
with the direct series estimates of Guttmann and Torrie, values derived 
from (14) (16) using v = 0.588 _+ 0.0015 (24) and with values calculated from 
Cardy's e-expansion. 

Guttmann and Torrie's conjectured form for 71(0, 1c) is linear in ,1 
(=  re/0). They conjectured a similar form in two dimensions, a result which 
conformal invariance arguments subsequently proved to be exact. (is/ We 
find that such a form, with very similar constants, fits our data very well 
also. Furthermore, we have found that this form can be successfully 
extended, in a variety of ways, to a corresponding form for 71(0, ~b). 
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However, in the absence of any firm theoretical basis for the angular 
dependence of critical exponents (or amplitudes) for either SAWs or stars, 
we refrain from presenting such fits. 

We see that our estimates of 71(0, ~) in Table I decrease as 0 decreases, 
a result which reflects the increasing confinement that occurs as 0 
decreases. There is a large difference between 71 for the two realizations 
of an 1/8-space, namely 7l(~z/4, ~z)_ -0.76 and 71(~/2, ~/2)--- -0.283. 
Although a SAW in (~/4, ~r)-wedge has a wide lateral freedom, it is 
constrained very strongly in its other direction and this presumably 
accounts for the small value of 71(7c/4,~). Finally, we note that 
71(3~/2, 3~/2)> 7~(3~/2, 7c), which is consistent with a (3~/2, 3~/2)-wedge 
corresponding to a 7/8-space and a (3~/2, ~z)-wedge corresponding to a 
3/4-space. 

We have also estimated the mean square radius of gyration (about the 
center of mass) and the mean square end-to-end length of a SAW in a 
(0, ~b)-wedge. We expect that 

(S~(O,~b;1))=A(O,(b;1)N2~[l+a(O,(b;1)N ~+  . . . ]  (17) 

and 

(R](O,~;1))=B(O,(J;1)n2~[l+b(O,O;1)n-~+ . . . ]  (18) 

respectively, where in general N =  nf+ 1, v is about 0.588, and A is about 
0.47, as for the parent lattice. (24) If we plot ln(S~v(0, q~; 1)) against ln N 
and ln(R](0,  ~b; 1)) against in n, we obtain a set of parallel straight lines 
for the various (0, ~b)-wedges. This strongly suggests that the exponent v is 
independent of (0, ~b) and we assume the value v = 0.588, which is consis- 
tent with the slope of the log-log plots. 

With this assumption about the value of the exponent v, we have 
plotted (S~(O, ~b; 1) ) /N  1"176 against N 0.47 and (R2(O, ~b; 1))/ /7 1"176 against 
/7--0.47 and our estimates of A(O, ~b; 1 ) and B(O, ~b; 1 ) are given in Table II. 
Sample plots are presented in Fig. 2. 

These results for the walk dimensions reflect the effects of the wedge 
surfaces in exactly the same way as did 71(0, 0~). For example, to within the 
quoted uncertainties, A(O, ~; 1) and B(O, lr; 1) both increase as 0 decreases, 
since the increasing confinement means that the walk is more extended and 
hence has a larger radius of gyration. Again the SAW is more extended in 
the (~/4, ~)-wedge than it is in the octant, a conclusion consistent with the 
relative values of F'~. 
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Fig. 2. Monte Carlo estimates of B(O, ~z; 1) for the diamond lattice. The largest error bars are 
about equal to the size of the symbols. To obtain the tabulated estimates, the intercepts 
should be divided by 3, since we have adopted the usual convention that the norm of a 
diamond lattice vector is , / 3 .  

Tab le  I. V a l u e s  o f  y l ( e ,  ~ )  

(0, ~b) Present work Series estimates 121) Conjectured114 t6) e_Expansioni131 

(3~/2, 3~r/2) 0.991 + 0.011 - -  - -  
(3~/2, ~z) 0.886 _+ 0,006 0.840 _+ 0.015 0.800... 
(~, re) 0.703 _+ 0.005 0.676 +_ 0.009 0.670 _+ 0.015 0.625 
(7r/2,)z) 0.220 _+ 0.005 0.16 _+ 0.03 0.17 _+ 0.03 0.109.,. 
(r~/4, ~) - 0 . 7 6  + 0.06 - 0 , 9  _+_ 0.2 - 0 . 8 2  _+ 0.05 -0 .914 , .  
(~/2, ~/2) -0 .283  _+ 0.007 - -  - -  



Branched Polymers in Wedge Geometry 547 

4. MONTE CARLO CALCULATIONS FOR STARS 

We now turn to consider uniform J-stars ( f >  1) attached by the 
vertex of degree f Data have been obtained for three types of wedge, 
namely, the (~, ~)-wedge (2 ~<f~< 5), the (~/2, 7r)-wedge ( f =  2, 3), and the 
(~/2, ~/2)-wedge ( f = 2 ) .  Estimates of 7r(0, r  were made by extra- 
polating plots of ln[s~(0, r nf against 1/ln nf Typical plots are 
shown in Fig. 1 and our best estimates are summarized in Table III. 
The results for f =  1 are reproduced from Table I and are included for 
comparison. 

As expected, for a given wedge, Ys decreases as f increases, reflecting 
the increasing interference between the branches. For the (~z, 7r)-wedge, we 
have enough data to fit the fdependence  of ?r(~z, ~z) by a low-order poly- 
nomial. In two-dimensional wedges, the exact result of Duplantier and 
Saleur ~5) is quadratic in f and the first-order ~-expansion (26) is also 
quadratic, 

,/l.(~c, ~) = 1 - � 8 9  ~ f ( f -  3) ~ + O(e 2) (19) 

Assuming a quadratic i n f f o r  ?r(zr, zc), we find 

71(~, ~ ) =  1.0513- 0 .27263f-0 .07571f  2 (20) 

which should be compared with the result obtained by truncating the 
expansion in (19) and setting e =  1, namely 

7r(~, ~) = 1 - 0 .3125f -  0.0625f 2 (21) 

If we assume a cubic in f, we find that the coefficient o f f  3 is of order 10 -4 .  

Values of 7r(~, ~c) calculated from (20) and (21) are compared in Table III 
with the corresponding Monte Carlo estimates. Clearly, (20) provides an 
excellent empirical form for ?/(~, ~). 

Table II. Estimates of A(6, ~; 1) and B(O, ~; 1) 

A(O, r 1) B(O, r 1 ) 

(0, r D SC D SC 

(3~/2, 3n/2) 0.235 _+ 0.002 0.189 _+ 0.003 1.597 __+ 0.003 1.30 _+ 0.02 
(37r/2, ~z) 0.238 __+ 0.003 0.205 + 0.010 1.68 + 0.01 1.37 i 0.02 
(7r, 7r) 0.241+0.002 0.198_+0.004 1.85__0.01 1.49+0.02 
@r/2, ~z) 0.250 _+ 0.002 0.208 + 0.003 2.23 + 0.02 1.85 _+ 0.05 
(z/4, 7c) 0.288 _+_ 0.002 0.245 + 0.006 2.88 __+ 0.05 2.48 _+ 0.08 
(~/2, z/2) 0.263 + 0.002 0.214 + 0.002 2.63 ! 0.01 1.92 _+ 0.06 

822/58/3 4-10 
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Table III. Values of yr(O, q)) 

(~, ~z) (~r/2, ~) (7z/2, 7z/2) 

f MonteCarlo Quadratic fitlY~ ~_Expansion~2~) Monte Carlo Monte Carlo 

1 0.703 _+ 0.005 0.70296 0.625 0.220 • 0.005 -0.283 _+ 0.007 
2 0.203 _+ 0.007 0.2032 0.125 -0.81 i 0.03 - 1.92 _+ 0.03 
3 - 0.44 ! 0.04 - 0.448 - 0.5 2.05 -+ 0.05 - -  
4 - 1.26 • 0.06 - 1.251 - 1.25 - -  - -  
5 -2.2_+0.1 a -2.20 -2.125 - -  - -  

a Simple cubic lattice only. 

We  no te  tha t  the es t imates  in T a b l e  l I I  satisfy the e x p o n e n t  

inequa l i t i e s  in (12). As an  example ,  we choose  to b o u n d  yz0Z, ~z) a n d  find 

27~(z, r t ) -  1 ~> 72(rt, zt) >~ 2~1(7r/2, 7 z ) -  1 

or, s u b s t i t u t i n g  n u m e r i c a l  values,  0.406 ~> 7z0r, ~z) >/ - 0 . 5 6 ,  which  is consis-  

t en t  with 72(g, 7~)=0.203 • 0.007. U n f o r t u n a t e l y ,  n o n e  of the b o u n d s  so 
der ived  are  very  useful,  s ince they are  all r a the r  weak.  

F ina l ly ,  we have  e s t ima ted  the m e a n  squa re  r ad ius  of g y r a t i o n  

(S2N(O, r  a n d  the m e a n  squa re  e n d - t o - e n d  leng th  (R](O, r  of  a 
b r a n c h  of a n  f - s t a r  in a (0, r  W e  have  fol lowed the m e t h o d  

descr ibed ear l ier  for S A W s  ( f  = 1), a n d  have  assumed ,  once  again ,  a va lue  
of  v = 0 . 5 8 8  a n d  a n  a s y m p t o t i c  b e h a v i o r  a n a l o g o u s  to tha t  g iven  in (17) 

a n d  (18). These  a s s u m p t i o n s  are s u p p o r t ed  by  the data .  O u r  es t imates  of 

the a m p l i t u d e s  A(O,r a n d  B(O,r are g iven in Tab les  IV a n d  V, 
respectively.  

As expected (see T a b l e  V), inc reas ing  f ex tends  the star,  as does 

decreas ing  the size of  the wedge. O n  the o the r  hand ,  the m e a n  squa re  

Table IV. Estimates of A(O, r f )  

(7% re) (7z/2, re) (7c/2, ~/2) 

f D SC D SC D SC 

1 0.241_+0.002 0.198_+0.004 0.250_+0.002 0.208+_0.003 0.263_+0.002 0.214_+0.002 
2 0.204_+0.001 0.173_+0.004 0.183_+0.003 0.157_+0.002 0.159_+0.002 0.133_+0.004 
3 0.151_+0.001 0.128_+0.002 0.140_+0.003 0.118_+0.003 
4 0.123_+0.001 0.101 _+0.001 - -  - -  - -  
5 - -  0.082 • 0.001 - -  - -  
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Table V. Estimates of B(0, ~; f) 
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(re, re) (re/2, n) (re/2, 7c/2) 

f D SC D SC D SC 

1 1.85_+0.01 1.49_+0.02 2.23_+0.02 1.85__+0.05 2.63_+0.01 1.92_+0.06 
2 1.95 _+ 0.01 1.575 _+ 0.005 2.30 • 0.02 1.93 _+ 0.03 2.80 _+ 0.03 2.36 • 0.04 
3 2.00 _+ 0.01 1.66 _+ 0.01 2.45 _+ 0.02 1.98 _+ 0.02 - -  - -  
4 2.07 _+ 0.01 1.693 _+ 0.003 . . . .  
5 - -  1.775 _+ 0.005 . . . .  

radius of gyration (see Table IV) decreases as f increases and, for f >  1, 
decreases as the wedge size decreases. The first part of this observation can 
be understood by remembering that the radii of gyration of different f-stars 
are compared at fixed N, whereas comparison of their end-to-end lengths 
is done at fixed n. To understand the second part of the observation, we 
must remember that the radius of gyration is calculated about the center 
of mass of the f-star. Hence, as the wedge size decreases, the branches are 
forced closer to their center of mass even though their lengths increase, and 
the result of this competition is a decrease in the radius of gyration. We 
note (see Tables II and V) that for a given wedge the branches of an f-star 
( f  ~> 1) are longer on the diamond lattice than on the simple cubic lattice. 
This reflects the more open structure and smaller coordination number of 
the diamond lattice. 

In Tables VI and VII, we give the amplitude ratios A(O,~;f)/ 
A(O, ~b; 1) and B(O, fb; f)/B(O, ~b; 1), respectively, which are expected to be 
lattice-independent quantities (9'27'2s) and could in principle be compared 
with experimental values. In related work, (9) we found that the estimated 
values of amplitude ratios were essentially independent of the assumed 

Table Vl. Estimates of Amplitude Ratios A(0, ~; f)/A(O, ~; 1) 

(z, zr) (7r/2, ~) (~/2, ~/2) 

f D SC D SC D SC 

1 1 1 1 1 1 1 
2 0.85_+0.02 0.87_+0.04 0.73_+0.02 0.76_+0.03 0.61__+0.02 0.62_+0.03 
3 0.63_+0.01 0.65_+_0.03 0.56_+0.02 0.57_+0.03 - -  - -  
4 0.51 _+ 0.01 0.51 _+0.02 - -  - -  
5 - -  0.41 • 0.02 . . . .  
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Table VII. Estimates of Ampl i tude Ratios B(O, (p; f ) / B ( O ,  dp; 1 ) 

(=, re) (7r/2, ~z) (re/2, =/2) 

f D SC D SC D SC 

1 1 1 1 1 1 1 
2 1.05 • 0.02 1.06 • 0.02 1.03 • 0.02 1.04 • 0.05 1.07 • 0.02 1.23 _+_ 0.06 
3 1.08 • 1.11 +0.03 1.10• 1.07__+0.04 - -  - -  
4 1.12• 1.14 •  - -  - -  
5 - -  1.19 • 0.02 - -  - -  - -  

value of v in the range 0.58-0.6. It appears that, to within the numerical 
uncertainties, our results are--with one exception--consistent with lattice 
independence. The exception probably results from us underestimating the 
uncertainties. 
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